Unsupervised frame based Semantic Role Induction: application to French and English
نویسندگان
چکیده
This paper introduces a novel unsupervised approach to semantic role induction that uses a generative Bayesian model. To the best of our knowledge, it is the first model that jointly clusters syntactic verbs arguments into semantic roles, and also creates verbs classes according to the syntactic frames accepted by the verbs. The model is evaluated on French and English, outperforming, in both cases, a strong baseline. On English, it achieves results comparable to state-of-the-art unsupervised approaches to semantic role induction.
منابع مشابه
Unsupervised Induction of Frame-Semantic Representations
The frame-semantic parsing task is challenging for supervised techniques, even for those few languages where relatively large amounts of labeled data are available. In this preliminary work, we consider unsupervised induction of frame-semantic representations. An existing state-of-the-art Bayesian model for PropBank-style unsupervised semantic role induction (Titov and Klementiev, 2012) is exte...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملUnsupervised Induction of Cross-Lingual Semantic Relations
Creating a language-independent meaning representation would benefit many crosslingual NLP tasks. We introduce the first unsupervised approach to this problem, learning clusters of semantically equivalent English and French relations between referring expressions, based on their named-entity arguments in large monolingual corpora. The clusters can be used as language-independent semantic relati...
متن کاملMultilingual Aliasing for Auto-Generating Proposition Banks
Semantic Role Labeling (SRL) is the task of identifying the predicate-argument structure in sentences with semantic frame and role labels. For the English language, the Proposition Bank provides both a lexicon of all possible semantic frames and large amounts of labeled training data. In order to expand SRL beyond English, previous work investigated automatic approaches based on parallel corpor...
متن کامل